No Association of Peptide Tyrosine-Tyrosine (PY) Gene R72T Variant with Obesity in the Kampar Health Clinic Cohort, Malaysia

Chan PM, Fan SH \& Say YH*
Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Perak Campus, 31900 Kampar, Perak, Malaysia

Abstract

Introduction: Peptide Tyrosine-Tyrosine (PYY) is a 36 -amino acid peptide hormone released post-prandially from the endocrine cells in the intestinal tract to suppress pancreatic secretions and eventually reduce appetite. The R 72 T variant in the PYY gene (rs1058046) has been associated with increased susceptibility to obesity. Therefore, the objective of this study was to investigate the association of this variant with obesity and its related anthropometric measurements among the Kampar Health Clinic cohort, Malaysia. Methodology: A total of 197 (78 males, 119 females; 98 non-obese, 99 obese) subjects were recruited by convenience sampling and anthropometric measurements were taken. Genotyping was performed using StuI Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP), revealing 61 RR, 94 RT and 42 TT subjects. Results: Most of the obese subjects had the RT genotype (50.5%), while only 18.2% were TT. PYY R72T genotypes and alleles had no association with obesity ($p=0.535$; 0.074 , respectively), gender ($p=0.767 ; p=0.100$, respectively) but were associated with ethnicity ($p=0.003 ; p=0.002$, respectively). Among the 13 anthropometric measurements taken, significant difference was only found in Waist Circumference (WC) and Visceral Fat Level (VFL) among the alleles, suggesting that subjects with T allele will have an increment of 1.82 cm in WC and 1.32% in VFL. Conclusion: The R72T variant in $P Y Y$ gene was not associated with obesity and most of its related anthropometric measurements. This suggests that other genes and/or environmental factors like dietary habits and lifestyle factors may be the contributors of obesity.

Keywords: Anthropometric measurements, Malaysia, obesity, Peptide TyrosineTyrosine, single nucleotide polymorphism

INTRODUCTION

Obesity is the excessive accumulation of body fat in the body. It is a multifactorial disease which has great socio-economic and personal health impacts for the nation. The

World Health Organisation (WHO) stated that globally in 2005, approximately 1.6 billion adults aged 15 and above were overweight and at least 400 million adults were obese (WHO, 2011). Besides, WHO have also projected that by 2015,

[^0]approximately 2.3 billion adults will be overweight and more than 700 million adults will be obese (WHO, 2011). According to the Ministry of Health Malaysia's Third National Health and Morbidity Survey (2006), the combined prevalence of overweight and obesity in Malaysia was alarmingly high at 43.1%. Therefore, obesity is a major public health threat in Malaysia.

Peptide Tyrosine-Tyrosine (PYY) is a 36amino acid polypeptide which is secreted from the L cells of the ileum, colon and rectum in response to food intake. It contains several tyrosine residues and requires C terminal amidation for biologic activity (Austin \& Marks, 2008). There are 2 endogenous forms of PYY in the human body, which are PYY ${ }_{1-36}$ and $P Y Y_{3-36} \mathrm{PYY}_{3-36}$ is the peripheral active anorectic signal and the most abundant form of PYY found in the human colon (Grandnt et al., 1994). It is created by the cleavage of N -terminal TyrPro residues by dipeptidyl peptidase IV (DPP-IV). Furthermore, PYY_{3-36} binds to the neuropeptide Y 2 receptor, which inhibits the NPY neurons and stimulates proopiomelanocortin (POMC) neurons (Austin \& Marks, 2008). Studies have reported that PYY plays an important role in reducing food intake in rodents and suppressing appetite in humans postprandium (Hung et al., 2004). In humans, PYY mediates post-prandial satiety through the appetite-regulating centres in the hypothalamus (Hung et al., 2004; Torekov et al., 2005).

According to several researchers (Hung et al., 2004; Ma et al., 2005; Torekov et al., 2005), the variants in the gene encoding $P Y Y$ may be associated with obesity. Moreover, the studies have also examined the variants in $P Y Y$ for association with metabolic disorders. They have found the plasma PYY concentration to be lower in the obese individuals compared to the lean individuals. Therefore, the genetic variation in $P Y Y$ gene has shown a major correlation with obesity and metabolic syndrome.

Several studies reported the presence of genetic variants at the human $P Y Y$ locus which influences the PYY biosynthesis (Hung et al., 2004; Ma et al., 2005; Shih et al., 2009; Torekov et al., 2005).

One of the common polymorphisms in the PYY gene is the R72T variant (rs1058046), located at exon 3 with a base change in nucleotide +778 from G to C, resulting in a non-synonymous amino acid residue change at position 72 from Arg to Thr. This variant is located at 5 amino acids downstream from the $\mathrm{Lys}_{66} \mathrm{Arg}_{67}$ dibasic cleavage of pro-PYY (Shih et al., 2009). The alteration of the helical structure in the proximity of this site may impair the efficiency of the post-translational proteolytic liberation of PYY from its flanking peptide (Torekov et al., 2005). The association studies of R72T polymorphism in PYY gene with obesity were carried out among the British (Torekov et al., 2005) and Swedish (Lavebratt et al., 2005) populations. Currently, there is limited data and evidence on this association in the Malaysian population. As different populations show different associations in the existing research, the data on the association of R72T variant with obesity in other populations cannot be used to extrapolate for the Malaysian population. Therefore, in this pilot study among the Kampar Health Clinic cohort in Perak, genotyping of $P Y Y$ R72T gene variant was performed to determine the prevalence of the mutated genotypes and alleles, and to investigate if there was any association with obesity.

METHODOLOGY

Subjects

A convenience sampling method was adopted for this study. The blood sample collection was carried out at Kampar Health Clinic (Klinik Kesihatan), Perak, from October to December, 2010. A short introduction was given to the subjects and blood drawing was conducted with the aid of a qualified
phlebotomist. As the plasma will be used for biochemical tests in future studies, the exclusion criteria of the subjects include hyperthyroidism, pituitary diseases, chronic liver disease, chronic renal disease, acute infection, haematologic diseases and patients under medications that affect the glucose metabolism.

This study was registered under the National Medical Research Registry NMRR-09-826-4266 and the protocol was approved by the Medical Research and Ethics Committee, Ministry of Health, Malaysia. All individuals who participated in this study signed informed consent forms and all samples were taken in accordance with the Declaration of Helsinki (revised in Seoul, 2008).

Questionnaire and anthropometric measurements

The questionnaire-interview session was conducted by the field team to evaluate the socio-demographic data, which provided information on age, gender, race, marital status, occupation, monthly household income, educational status and family history of obesity. The systolic and diastolic blood pressures (SBP; DBP) and pulse rates of the subjects were measured using the HEM-712C Omron blood pressure monitor and duplicate readings were obtained after the subjects were in resting condition for at least 10 minutes. Besides, the height, waist and hip circumferences were determined using a measuring tape. Waist-Hip Ratio (WHR) was calculated by dividing the waist circumference (WC) by hip circumference. The HBF-362 Omron Karada scan bioimpedance scale was used to analyse body compositions namely weight, body mass index (BMI), total body fat (TBF), subcutaneous fat (SF), visceral fat (VFL), resting metabolism (RM) and subcutaneous muscle (SM). The BMI cut-off point for obesity for this study was $27 \mathrm{~kg} / \mathrm{m}^{2}$ (Deurenberg-Yap et al., 2000).

DNA extraction and genotyping

Five millilitres of blood sample was collected and genomic DNA was then extracted from the nucleated leukocytes using the Wizard ${ }^{\circledR}$ Genomic DNA Purification Kit (Promega Inc., Madison, WI) according to the manufacturer's protocol. Basically, there were 4 crucial steps in this purification procedure, which included cell lysis, nuclei lysis, protein precipitation and DNA rehydration.

Polymerase Chain Reaction (PCR) was carried out under the standard conditions using the MJ Mini ${ }^{\text {TM }}$ Personal Thermal Cycler (Biorad) for 35 cycles. The cycle began with a hot start at $95^{\circ} \mathrm{C}$ for 5 minutes, denaturation at $95^{\circ} \mathrm{C}$ for 30 seconds, annealing at $68^{\circ} \mathrm{C}$ for 15 seconds and extension at $72^{\circ} \mathrm{C}$ for 15 seconds. The $P Y Y$ R72T gene variant was amplified by using a set of forward and reverse primers adapted from Hung et al. (2004), with the forward primer sequence 5^{\prime} CCC GCC GTG TAGGGT CGA GGC TT 3 ' and reverse sequence 5^{\prime} GTG CGT ATG CAA ATG ACG TGG GC 3'. Each of the PCR reaction vials contained $20 \mu l$ of solution, consisting of forward primer $(2 \mu \mathrm{M})$, reverse primer $(2 \mu \mathrm{M})$, Taq buffer with ammonium sulphate (1X), Taq DNA polymerase recombinant ($1 \mathrm{U} / \mu \mathrm{l}$)(Fermentas, Lithuania), dNTP ($200 \mu \mathrm{M}$) and magnesium chloride (1.5 mM).

Genotypes were determined by Restriction Fragment Length Polymorphism (RFLP), where restriction enzyme StuI cut the DNA at the restriction site and formed restriction fragments with the size of 176bp and 22bp. Hence, the $P Y Y$ genotypes were RR (undigested, homozygous wild-type), RT (digested, heterozygous) and TT (digested, homozygous mutant) (Figure 1). The fragments were resolved by 2.5% agarose gel electrophoresis at constant 90 V for 45 minutes before staining with ethidium bromide and viewed under MultiDoc-It Digital Imaging System with M-20 Transilluminator. The gel images were

Figure 1. PYY R72T Genotyping of the subjects by StuI Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis on 2.5% agarose gel. Lane 1 - Homozygous wild-type RR (198bp), Lane 2 - Homozygous mutated TT (176bp, 22bp), Lane 3 and 4 Heterozygous mutated RT (198bp, 176bp), M Fermentas GeneRuler ${ }^{\text {TM }} 50$ bp DNA ladder. The unspecific bands at around 50bp indicate primerdimers.
captured using DigiCam 120 digital camera with 15.1 megapixel resolutions and documented using the UVP's capture software. The three genotypes were validated by sending to an outsourced DNA sequencing service.

Statistical analysis

The compiled data was analysed using Statistical Package for Social Sciences, SPSS ${ }^{\circledR}$ Statistics for Windows ${ }^{\circledR}$ Version 17.0. Descriptive statistics was used to compute frequencies and percentages for socio-
demographic data, genotype and allele frequencies. It was also used to calculate the means and standard deviations for anthropometric measurements. Besides, the Pearson's Chi-square analysis was used to compare the genotype and allele frequencies between groups. Also, Student's t-test was utilised to determine the differences between means. One-Way Analysis of Variance (ANOVA) was used to test the equality of three or more means at one time. $P<0.05$ was denoted as statistically significant.

RESULTS

Socio-demographic characteristics of subjects

Table 1 illustrates the socio-demographic data of the 197 subjects, who ranged from 21 to 80 years, with a mean \pm SD of 55.1 ± 11.0 years. Non-obese and obese subjects were equally distributed in age, 56.9 ± 10.4 and 53.4 ± 11.4 years, respectively. The majority of the non-obese subjects were females and Chinese. Most of the obese subjects were Malays and between age 51 to 60 . The majority of the subjects were retired or not working, had monthly household incomes below RM1000 and had primary level education. Most of the non-obese and obese subjects had no self-reported family history of obesity.

Anthropometric measurements

Table 2 shows the means of 13 anthropometric measurements within obesity, gender and ethnic groups. As expected, SBP, DBP, weight, WC, BMI, TBF, SF, VFL and RM were significantly higher in obese subjects compared to non-obese subjects, while it was the other way around for SM. In contrast, there was no significant difference between obese groups for pulse rate, height and WHR, indicating that WC may be a better predictor than WHR for obesity. Within genders, pulse rate, BMI, TBF and SF were significantly higher in females

Table 1. Socio-demographic characteristics of the subjects

Variables		Total		BMI Class			
				Non-obese		Obese	
		N	\%	N	\%	N	\%
N		197	100	98	49.7	99	50.3
Sex	Male	78	39.6	44	44.9	34	34.3
	Female	119	60.4	54	55.1	65	65.7
Race	Malay	75	38.1	25	25.5	50	50.5
	Chinese	77	39.1	51	52.0	26	26.3
	Indian	40	20.3	20	20.4	20	20.2
	Others	5	2.5	2	2.0	3	3.0
Age groups (years)	21-30	4	2.0	2	2.0	2	2.0
	31-40	15	7.6	4	4.1	11	11.1
	41-50	49	24.9	24	24.5	25	25.3
	51-60	65	33.0	30	30.6	35	35.4
	61-70	47	23.9	26	26.5	21	21.2
	71-80	17	8.6	12	12.2	5	5.1
Occupation	Professional	6	3.0	2	2.0	4	4.0
	White-collar	10	5.1	6	6.1	4	4.0
	Blue-collar	36	18.3	17	17.3	19	19.2
	Retired/Not working	124	62.9	63	64.3	61	61.6
	Own/Others	21	10.7	10	10.2	11	11.1
Monthly household income	Below RM1000	112	56.9	60	61.2	52	52.5
	RM1001-3000	71	36.0	31	31.6	40	40.4
	RM3001-5000	11	5.6	4	4.1	7	7.1
	Above RM5000	3	1.5	3	3.1	0	0
Educational status	No Formal Education	25	12.7	12	12.2	13	13.1
	Primary Level	71	36.0	32	32.7	39	39.4
	Lower Secondary Level	45	22.8	25	25.5	20	20.2
	Upper Secondary Level	44	22.3	24	24.5	20	20.2
	Pre-University Level	5	2.5	2	2.0	3	3.0
	University Level	7	3.6	3	3.1	4	4.0
Family history of obesity	Yes	58	29.4	18	18.4	40	40.4
	No	139	70.6	80	81.6	59	59.6

while SBP, DBP, height, weight, WC, WHR, VFL, RM and SM being significantly higher in males. Besides, SBP, pulse rate, WC, WHR, BMI, TBF, SF and VFL were significantly highest among the Malays. However, DBP, height, WHR, RM and SM had no association with ethnicity.

Genotype and allele frequencies

The genotype and allele frequencies are shown in Table 3. The allele frequency for
the mutated T allele was 0.45 and most of the obese subjects had heterozygous mutated RT genotype. Overall, the mutated TT genotype and T allele were both not associated with obesity and the odds ratio for obesity was 0.946 for those with T allele. Besides, the majority of the ethnic groups had mutated RT genotype with most of the Malays and Indians having T alleles. However, R alleles were dominated by the Chinese and other races had the same allele
Table 2. Means of the anthropometric measurements according to BMI status, gender and ethnicity

Anthropometric Measurements	$\text { Mean } \pm S D$ BMI Status		$p^{\#}$	$\begin{gathered} \text { Mean } \pm S D \\ \text { Gender } \end{gathered}$		$p^{\#}$	$M e a n \pm S D$ Ethnicity				$p^{\#}$
	Non-Obese	Obese		Male	Female		Malay	Chinese	Indian	Others	
SBP (mmHg)	$\begin{array}{r} 139.37 \\ \pm 21.29 \end{array}$	$\begin{array}{r} 146.52 \\ \pm 20.64 \end{array}$	0.018	$\begin{array}{r} 144.26 \\ \pm 20.19 \end{array}$	$\begin{array}{r} 142.11 \\ \pm 21.90 \end{array}$	0.027	$\begin{array}{r} 148.69 \\ \pm 22.71 \end{array}$	$\begin{array}{r} 140.05 \\ \pm 17.87 \end{array}$	$\begin{array}{r} 138.13 \\ \pm 22.82 \end{array}$	$\begin{array}{r} 140.40 \\ \pm 18.39 \end{array}$	0.027
DBP (mmHg)	$\begin{array}{r} 79.97 \\ \pm 10.42 \end{array}$	$\begin{array}{r} 84.20 \\ \pm 10.62 \end{array}$	0.005	$\begin{array}{r} 85.10 \\ \pm 10.68 \end{array}$	$\begin{array}{r} 80.13 \\ \pm 10.30 \end{array}$	0.592	$\begin{array}{r} 83.25 \\ \pm 11.49 \end{array}$	$\begin{array}{r} 81.29 \\ \pm 10.07 \end{array}$	$\begin{array}{r} 81.95 \\ \pm 9.79 \end{array}$	$\begin{array}{r} 78.40 \\ \pm 16.24 \end{array}$	0.592
Pulse Rate (bpm)	$\begin{array}{r} 74.41 \\ \pm 13.11 \end{array}$	$\begin{array}{r} 73.29 \\ \pm 12.81 \end{array}$	0.547	$\begin{array}{r} 72.83 \\ \pm 13.33 \end{array}$	$\begin{array}{r} 74.51 \\ \pm 12.69 \end{array}$	0.046	$\begin{array}{r} 76.79 \\ \pm 13.79 \end{array}$	$\begin{array}{r} 71.38 \\ \pm 12.24 \end{array}$	$\begin{array}{r} 73.90 \\ \pm 11.98 \end{array}$	$\begin{array}{r} 67.40 \\ \pm 10.46 \end{array}$	0.046
Height (cm)	$\begin{aligned} & 159.09 \\ & \pm \quad 8.84 \end{aligned}$	$\begin{array}{r} 157.53 \\ \pm 8.83 \end{array}$	0.216	$\begin{array}{r} 165.73 \\ \pm \quad 7.15 \end{array}$	$\begin{aligned} & 153.44 \\ & \pm \quad 6.02 \end{aligned}$	0.074	$\begin{array}{r} 156.74 \\ \pm \quad 7.90 \end{array}$	$\begin{array}{r} 159.98 \\ \pm 9.01 \end{array}$	$\begin{array}{r} 157.45 \\ \pm 8.89 \end{array}$	$\begin{array}{r} 163.00 \\ \pm 15.17 \end{array}$	0.074
Weight (kg)	$\begin{array}{r} 60.91 \\ \pm 8.61 \end{array}$	$\begin{array}{r} 76.68 \\ \pm 11.22 \end{array}$	<0.001	$\begin{array}{r} 73.27 \\ \pm 11.55 \end{array}$	$\begin{gathered} 65.92 \\ \pm 12.67 \end{gathered}$	0.038	$\begin{array}{r} 71.58 \\ \pm 14.76 \end{array}$	$\begin{array}{r} 66.15 \\ \pm 10.82 \end{array}$	$\begin{array}{r} 68.04 \\ \pm 10.73 \end{array}$	$\begin{array}{r} 75.26 \\ \pm 15.06 \end{array}$	0.038
WC (cm)	$\begin{array}{r} 86.19 \\ \pm 7.66 \end{array}$	$\begin{array}{r} 97.27 \\ \pm 7.45 \end{array}$	<0.001	$\begin{array}{r} 94.48 \\ \pm 8.41 \end{array}$	$\begin{array}{r} 89.97 \\ \pm 9.55 \end{array}$	0.001	$\begin{array}{r} 94.40 \\ \pm 10.02 \end{array}$	$\begin{array}{r} 88.53 \\ \pm 8.96 \end{array}$	$\begin{array}{r} 92.79 \\ \pm 6.77 \end{array}$	$\begin{array}{r} 93.60 \\ \pm 10.84 \end{array}$	0.001
WHR	$\begin{array}{r} 0.91 \\ \pm 0.07 \end{array}$	$\begin{array}{r} 0.91 \\ \pm 0.07 \end{array}$	0.671	$\begin{array}{r} 0.95 \\ \pm 0.05 \end{array}$	$\begin{array}{r} 0.88 \\ \pm 0.07 \end{array}$	0.093	$\begin{array}{r} 0.92 \\ \pm 0.08 \end{array}$	$\begin{array}{r} 0.90 \\ \pm 0.07 \end{array}$	$\begin{array}{r} 0.91 \\ \pm 0.07 \end{array}$	$\begin{array}{r} 0.87 \\ \pm 0.10 \end{array}$	0.093
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)	$\begin{array}{r} 23.97 \\ \pm 1.93 \end{array}$	$\begin{array}{r} 30.94 \\ \pm 3.63 \end{array}$	<0.001	$\begin{array}{r} 26.66 \\ \pm 3.76 \end{array}$	$\begin{array}{r} 28.01 \\ \pm 4.94 \end{array}$	<0.001	$\begin{array}{r} 29.08 \\ \pm 4.91 \end{array}$	$\begin{array}{r} 25.86 \\ \pm 3.86 \end{array}$	$\begin{array}{r} 27.48 \\ \pm 4.09 \end{array}$	$\begin{array}{r} 28.26 \\ \pm 4.55 \end{array}$	<0.001
TBF (\%)	$\begin{array}{r} 31.62 \\ \pm 5.89 \end{array}$	$\begin{array}{r} 36.78 \\ \pm 5.30 \end{array}$	<0.001	$\begin{array}{r} 28.73 \\ \pm 4.45 \end{array}$	$\begin{array}{r} 37.80 \\ \pm 4.16 \end{array}$	0.004	$\begin{array}{r} 35.68 \\ \pm 5.59 \end{array}$	$\begin{array}{r} 32.24 \\ \pm 6.08 \end{array}$	$\begin{array}{r} 35.23 \\ \pm 6.48 \end{array}$	$\begin{array}{r} 34.32 \\ \pm 6.65 \end{array}$	0.004
SF (\%)	$\begin{array}{r} 24.52 \\ \pm 6.10 \end{array}$	$\begin{array}{r} 31.70 \\ \pm 7.85 \end{array}$	<0.001	$\begin{array}{r} 20.37 \\ \pm 4.27 \end{array}$	$\begin{array}{r} 33.21 \\ \pm 5.05 \end{array}$	0.009	$\begin{array}{r} 30.01 \\ \pm 7.81 \end{array}$	$\begin{array}{r} 25.80 \\ \pm 7.43 \end{array}$	$\begin{array}{r} 28.98 \\ \pm 7.82 \end{array}$	$\begin{array}{r} 28.82 \\ \pm 9.64 \end{array}$	0.009
VFL (\%)	$\begin{array}{r} 8.82 \\ \pm 3.17 \end{array}$	$\begin{array}{r} 16.46 \\ \pm 4.77 \end{array}$	<0.001	$\begin{array}{r} 14.22 \\ \pm 4.95 \end{array}$	$\begin{array}{r} 11.64 \\ \pm 5.74 \end{array}$	0.009	$\begin{array}{r} 14.28 \\ \pm 6.12 \end{array}$	$\begin{array}{r} 11.29 \\ \pm 5.00 \end{array}$	$\begin{array}{r} 12.20 \\ \pm 5.12 \end{array}$	$\begin{array}{r} 13.20 \\ \pm 3.35 \end{array}$	0.009
RM (kcal)	$\begin{array}{r} 1333.50 \\ \pm 194.18 \end{array}$	$\begin{aligned} & 1536.60 \\ & \pm 215.913 \end{aligned}$	<0.001	$\begin{array}{r} 1607.06 \\ \pm 182.09 \end{array}$	$\begin{array}{r} 1323.15 \\ \pm 181.95 \end{array}$	0.365	$\begin{array}{r} 1462.55 \\ \pm 251.50 \end{array}$	$\begin{array}{r} 1413.56 \\ \pm 213.46 \end{array}$	$\begin{array}{r} 1414.03 \\ \pm 201.98 \end{array}$	$\begin{array}{r} 1542.00 \\ \pm 298.18 \end{array}$	0.365
SM (\%)	$\begin{gathered} 25.19 \\ \pm 3.5474 \end{gathered}$	$\begin{gathered} 23.65 \\ \pm 3.3857 \end{gathered}$	<0.001	$\begin{array}{r} 27.99 \\ \pm 2.22 \end{array}$	$\begin{array}{r} 22.08 \\ \pm 1.92 \end{array}$	0.057	$\begin{array}{r} 23.76 \\ \pm 3.28 \end{array}$	$\begin{array}{r} 25.24 \\ \pm 3.52 \end{array}$	$\begin{array}{r} 23.99 \\ \pm 3.70 \end{array}$	$\begin{array}{r} 25.02 \\ \pm 4.96 \end{array}$	0.057

[^1]Table 3. Obesity status, race, gender and anthropometric measurements values according to genotypes and alleles

Variables	Genotype			Alleles	
	RR	RT	TT	R	T
Obesity Status					
Non-obese	30 (30.6)	44 (44.9)	24 (24.5)	104 (53.1)	92 (46.9)
Obese	31 (31.3)	50 (50.5)	18 (18.2)	112 (56.6)	86 (43.4)
χ^{2}	1.251	0.786			
df	2	1			
p^{\S}	0.535	0.074			
Ethnicity					
Malay	19 (25.3)	38 (50.7)	18 (24.0)	76 (50.7)	74 (49.3)
Chinese	35 (45.5)	34 (44.2)	8 (10.4)	104 (67.5)	50 (32.5)
Indian	6 (15.0)	19 (47.5)	15 (37.5)	31 (38.8)	49 (61.3)
Others	1 (20.0)	3 (60.0)	1 (20.0)	5 (50.0)	5 (50.0)
χ^{2}	19.459	15.072			
df	6	3			
p^{\S}	0.003	0.002			
Gender					
Male	22 (28.2)	38 (48.7)	18 (23.1)	82 (52.6)	74 (47.4)
Female	39 (32.8)	56 (47.1)	24 (20.2)	134 (56.3)	104 (43.7)
χ^{2}	0.532	2.713			
df	2	1			
p^{\S}	0.767	0.100			
Anthropometric Measurements*					
SBP (mmHg)	137.62 ± 19.43	$\begin{aligned} & 145.37 \pm 21.50 \\ & p=0.060 \end{aligned}$	145.31 ± 22.12	141.24 ± 21.14	$\begin{aligned} & 145.09 \pm 21.12 \\ & p=0.073 \end{aligned}$
DBP (mmHg)	$\begin{aligned} & 81.82 \pm 11.17 \\ & p=0.441 \end{aligned}$	$\begin{aligned} & 81.45 \pm 10.32 \\ & p=0.233 \end{aligned}$	83.95 ± 10.93	81.52 ± 10.66	82.81 ± 10.73
Pulse Rate (bpm)	$\begin{aligned} & 74.05 \pm 13.01 \\ & p=0.075 \end{aligned}$	$\begin{aligned} & 72.07 \pm 12.10 \\ & p=0.274 \end{aligned}$	77.52 ± 14.14	73.21 ± 11.95	74.64 ± 14.03

From previous page

Variables	Genotype			Alleles	
	$R R$	RT	TT	R	T
Weight (kg)	$\begin{aligned} & 68.29 \pm 14.34 \\ & p=0.575 \end{aligned}$	$\begin{aligned} & \quad 68.36 \pm 11.97 \\ & p=0.183 \end{aligned}$	70.67 ± 12.03	68.07 ± 13.19	69.79 ± 12.09
WC (cm)	$\begin{aligned} & \quad 89.91 \pm 10.17 \\ & p=0.143 \end{aligned}$	$\begin{aligned} & \quad 92.22 \pm 0.34 \\ & p=0.048 \end{aligned}$	93.40 ± 7.85	90.92 ± 9.56	92.79 ± 9.00
WHR	$\begin{aligned} & 0.90 \pm 0.07 \\ p= & 0.256 \end{aligned}$	$p=0.273$	0.91 ± 0.07	0.91 ± 0.07	0.91 ± 0.07
BMI	$\begin{aligned} & 26.98 \pm 4.60 \\ & p=0.398 \end{aligned}$	$\begin{aligned} & 27.46 \pm 4.35 \\ & p=0.600 \end{aligned}$	28.22 ± 4.90	28.26 ± 16.72	29. 19 ± 18.45
TBF (\%)	$\begin{aligned} & 33.64 \pm 5.32 \\ & p=0.667 \end{aligned}$	$\begin{aligned} & 34.38 \pm 6.23 \\ & p=0.533 \end{aligned}$	34.65 ± 7.15	34.03 ± 5.81	34.42 ± 6.55
SF (\%)	$\begin{aligned} & 27.45 \pm 6.90 \\ & p=0.636 \end{aligned}$	$\begin{aligned} & 28.20 \pm 7.99 \\ & p=0.796 \end{aligned}$	28.95 ± 9.01	28.03 ± 7.43	28.24 ± 8.41
VFL (\%)	$\begin{aligned} & 11.82 \pm 5.85 \\ & p=0.323 \end{aligned}$	$\begin{aligned} & 12.87 \pm 5.38 \\ & p=0.019 \end{aligned}$	13.40 ± 5.57	12.07 ± 5.53	13.39 ± 5.55
RM (kcal)	$\begin{aligned} & 1428.46 \pm 258.58 \\ & p=0.720 \end{aligned}$	$\begin{aligned} & 1428.78 \pm 217.11 \\ & p=0.154 \end{aligned}$	1461.07 ± 211.10	1420.82 ± 236.09	1453.83 ± 217.95
SM (\%)	$\begin{aligned} & 24.74 \pm 3.39 \\ & p=0.677 \end{aligned}$	$\begin{aligned} & 24.22 \pm 3.38 \\ & p=0.337 \end{aligned}$	24.41 ± 4.12	24.44 ± 3.41	25.22 ± 11.37

[^2]frequencies for both R and T alleles. Therefore, it can be stated that the $P Y Y$ R72T genotypes and alleles were associated with ethnicity. On the other hand, they were not associated with gender as the majority of the males and females had RT genotype and R allele. All the subjects with TT genotype had higher means of anthropometric measurements compared to RR and RT genotypes, except for SBP, WHR and SM which were higher among the subjects with RT genotype. Besides, subjects with T allele had higher means for all the anthropometric measurements except for WHR. However, significant difference was only found in WC and VFL among the alleles, indicating that subjects with T allele will cause an increment of 1.82 cm in WC and 1.32% in VFL.

DISCUSSION

Based on the socio-demographic data, there were more female obese subjects compared to males. According to Kee et al. (2008), the prevalence of obesity in Malaysian women is greater than in men. A national study on prevalence of obesity among Malaysians has also reported a significantly higher prevalence of obesity in females (13.8\%) compared to males (9.6%) (Rampal et al., 2007). Hence, obesity appears to be more likely to occur in women compared to men in this study. This may be due to the majority of the females being housewives, married and with a lower educational level. Hence, these factors increased the susceptibility of a sedentary lifestyle and reduced health literacy (Kee et al., 2008). Among the ethnic groups, obesity was more prevalent among Malays, as supported by the nation-wide study by Rampal et al. (2007) and among clinical students in a Malaysian medical school (Boo et al., 2010). There was an increase in prevalence of obesity in the age group from 21-30 to 51-60 years and a decrease in the age group of 61-70 and 71-80 years, consistent with the study of Kee et al. (2008) which showed that prevalence of obesity increased steadily with age until the age of

50-59 years and decreased after 59 years. This may be due to a change in lifestyle towards a sedentary pattern as age increases. Besides, physiological changes such as an increase in body fat and a reduction in lean body mass, which are associated with older age, may lead to a high risk association of age with obesity (Kee et al., 2008). Meanwhile, there was high prevalence of obesity in subjects that were retired or not working. This may be due to the sedentary lifestyle and greater accessibility to food for those who were not working. Among the household income categories, prevalence of obesity was the highest in incomes of less than RM1000. Kampar, a semi-urban town in the state of Perak and which is still under-developed consists of many low-income residents. However, according to Sidik \& Rampal (2009), there was no significant association between obesity and total family income. Finally, there was high prevalence of obesity among subjects with a primary level education. According to Kee et al. (2008), the relation between prevalence of obesity with level of education is an inverse relationship. This may be due to the observation that high educational attainment has an effect on the attitude of a person towards body weight control, dietary pattern and a healthier lifestyle.

The mutated T allele frequency was 0.45 , similar to the European Caucasians (0.45) and Hispanics (0.43), but lower than the subSaharan Africans (0.52) (Shih et al., 2009). Both the mutated TT genotype and T allele were ethnically-different among Malaysians, but were not associated with obesity, as in the studies of Hung et al. (2004) and Lavebratt et al. (2006) among the British and Swedish men, respectively. However, according to Torekov et al. (2005), there was a modest association between type 2 diabetes and overweight with $P Y Y$ genetic variation among the Danish Caucasians. There was also a strong association of R72T carriers with obesity among normal-weight-range American twins (Shih et al., 2009). Among
genders, there was no significant association with the PYY R72T genotypes and alleles. According to the study of Lavebratt et al. (2006), there was less prevalence of the TT genotypes among obese men compared to lean Swedish men, while there were more TT genotypes in female obese subjects than male obese subjects. But contrary results were obtained by Siddiq et al. (2007) who found more evident association of obesity with the R72T genotypes in French Caucasian male children compared to females.

There was significant association between SBP and DBP with obesity. According to several studies, hypertension is highly associated with obesity (Narkiewicz, 2005; Rohrer, Anderson \& Furst, 2007). Individuals with elevated blood pressure and high BMI values tend to have higher pulse rate (Martin et al., 2004). Based on the results tabulated, the majority of the obese subjects in this study were Malays (50.5\%). Therefore, Malays tend to have higher SBP, DBP and pulse rate, which may be due to high BMI. Besides, a higher pulse rate was found in female subjects in this study. This is consistent with research done by Martin et al. (2004) who demonstrated in their analysis that females tend to have an elevated heart rate. Non-obese individuals, males and Chinese tend to be taller than other subjects. The studies of Sichieri, Siqueira \& Moura, (2000) and VelásquezMelendez et al. (1999) have indicated that weight gain is associated with a short stature. Velásquez-Melendez et al. (1999) have also stated that short stature in females is associated with obesity but not in males.

A high WC was found among the obese subjects, males and Malays. The study done by Vazquez et al. (2007) states that WC is strongly correlated with BMI. Besides, a study has found that WC is significantly associated with gender with 4 of the 5 obesity-associated risk factors detected (Zhu et al., 2002). Kee et al. (2008) used WC as the parameter to determine abdominal obesity among the different races. They found that Indians and Malays are at higher risk of
abdominal obesity, in parallel with the current study. However, obesity was more prevalent in women compared to men as WC was higher in females (Kee et al., 2008). There was an association between WHR with gender, but not for obesity and ethnicity. This is consistent with the research done by Myint et al. (2006) who reported a higher WHR in men compared to women in terms of selfreported poor physical functional health. Based on the study done by Deurenberg-Yap et al. (2000), Indian men in Singapore had the largest WHR, while the opposite was true for Chinese Singaporean men, thus contradicting the results obtained in this study.

This study found significant associations between TBF, SF, and VFL with obesity, gender and ethnicity. TBF, SF and VFL tend to be higher in obese and Malay subjects. Moreover, TBF and SF were found to be higher in females and VFL higher in males. According to Deurenberg-Yap et al. (2000),Chinese females have a lower percentage of body fat compared to Malay and Indian females. However, their study only found body fat percentage difference between Chinese and Indian males in Singapore. Besides, the percentage of body fat in males is lower compared to females. A higher RM was found in obese subjects, males and other races. Based on a study done by Huang et al. (2004), RM was found to be higher in severely obese patients. Moreover, males had a higher RM compared to females. Also, Albu et al. (1997) reported a lower resting metabolic rate among obese females.

This study has some limitations. Study participants may not represent the general Kampar Health Clinic population as only 197 subjects were studied and their results analysed. Besides, the inconsistency of the results obtained from this study may be due to a small sample size thus limiting statistical analysis and extrapolation. A larger sample size may prevent sampling bias. Future studies need to be done to assess the main contributing factors besides the association of the $P Y Y$ gene to obesity. Besides, insulin
level and lipid profile need to be evaluated to determine the association with obesity and the $P Y Y$ genotypes and alleles.

CONCLUSIONS

Taken together, although the $P Y Y$ R72T gene variant has been associated with obesity in different populations, a similar distribution of its genotypes and alleles across BMI groups and genders has been ruled out in the sampled multi-ethnic Malaysian cohort. Nevertheless, the genotype and allele distribution was ethnically-different, and the mutated T allele could predict a higher WC and VFL. Although the non-association with obesity could be due to the small sample size in our study, other genes or environmental factors such as dietary habits and lifestyle factors could also be other contributors to obesity in the sampled cohort.

ACKNOWLEDGEMENTS

This project was funded by the Universiti Tunku Abdul Rahman Research Fund (IPSR/RMC/UTARRF/C109/S1). We would like to extend our deepest gratitude to the Kinta District Health Office for granting us permission to carry out this study at the Kampar Health Clinic, the nurses who assisted with the blood sampling, and all respondents who volunteered to participate in this study.

REFERENCES

Albu J, Shur M, Curi M, Murphy L, Heymsfield SB \& Pi-Sunyer FX (1997). Resting metabolic rate in obese, premenopausal black women. Am J Clin Nutr 66: 531-538.

Austin J \& Marks D (2009). Hormonal regulators of appetite. Int J Pediatr Endocrinol doi: 10.1155/2009/141753.

Boo NY, Chia GJQ, Wong LC, Chew RM, Chong W \& Loo RCN (2010). The prevalence of obesity among clinical
students in a Malaysian medical school. Singapore Med J 51(2): 126-132.
Deurenberg-Yap M, Schmidt G, Staveren WV \& Deurenberg P (2000). The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int J Obes 24: 10111017.

Grandt D, Schimiczek M, Beglinger CH, Layer P, Goebell H, Eysselein VE \& Reeve JR Jr. (1994). Two molecular forms of peptide YY (PYY) are abundant in human blood: characterisation of a radioimmunoassay recognising PYY 136 and PYY 3-36. Regul Pept 51(2): 151159.

Huang KC, Kormas N, Steinbeck K, Loughnan G \& Caterson ID (2004). Resting metabolic rate in severely obese diabetic and non-diabetic subjects. Obes Res 12(5): 840-845.
Hung CC, Pirie F, Luan J, Lank E, Motala A, Yeo GS Keogh JM, Wareham NJ, O'Rahilly S \& Farooqi IS (2004). Studies of the peptide YY and neuropeptide Y2 receptor genes in relation to human obesity and obesity-related traits. Diabetes 53: 2461-2466.

Kee CC, Jamaiyah H, Noor Safiza MN, Khor GL, Suzana S, Jamalludin AR Rahmah R, Ahmad AZ, Ruzita AT, Wong NF \& Ahmad Faudzi Y (2008). Abdominal obesity in Malaysian adults: national health and morbidity survey III (NHMS III, 2006). Mal J Nutr 14(2): 125-135.

Lavebratt C, Alpman A, Persson B, Arner P \& Hoffstedt J (2006). Common neuropeptide Y2 receptor gene variant is protective against obesity among Swedish men. Int J Obes 30: 453-459.
Ma L, Tataranni PA, Hanson RL, Infante AM, Kobes S, Bagardus C \& Baier LJ (2005). Variations in peptide YY and Y2 receptors genes are associated with severe obesity in Pima Indian men. Diabetes 54: 1598-1602.

Martin LJ, Comuzzie AG, Sonnenberg GE, Myklebust J, James R, Marks J, Blangero J \& Kissebah AH (2004). Major quantitative trait locus for resting heart rate maps to a region on chromosome 4. Hypertension 43: 1146-1151.
Ministry of Health, Malaysia. (2006). National Health and Morbidity Survey III (NHMSIII) [Online]. http:// www.nih.gov.my/NHMS/index.html [Assessed 8 February 2011].
Myint PK, Welch AA, Luben RN, Wainwright NWJ, Surtees PG, Bingham SA, Wareham NJ, Smith RD, Harvey IM \& Khaw KT (2006). Obesity indices and self-reported functional health in men and women in the EPIC-Norfolk. Obesity 14(5): 884-893.

Narkiewicz K (2006). Obesity and hypertension-the issue is more complex than we thought. Nephrol Dial Transplant 21(2): 264-267.
Rampal L, Rampal S, Khor GL, Zain AM, Ooyub SB, Rahmat RB, Ghani SN \& Krishnan J (2007). A national study on the prevalence of obesity among 16,127 Malaysians. Asia Pac J Clin Nutr 16(3): 561-566.

Rohrer JE, Anderson GJ \& Furst JW (2007). Obesity and pre-hypertension in family medicine: implications for quality improvement. BMC Health Serv Res 7: 212-218.

Shih PB, Chiron S, Wen G, Nievergelt C, Mahata M, Khandrika S, Rao F, Fung MM, Mahata SK, Hamilton BA \& O'Connor DT (2009). Peptide YY (PYY) gene polymorphisms in the 3^{\prime} untranslated and proximal promoter regions regulate cellular gene expression and PYY secretion and metabolic syndromes traits in vivo. JClin Endocrinol Metab 94: 4557-4566.

Sichieri R, Siqueira KS \& Moura AS (2000). Obesity and abdominal fatness associated with undernutrition early in
life in a survey in Rio de Janeiro. Int J Obes 24: 614-618.

Siddiq A, Gueorguiev M, Samson C, Hereberg S, Heude B, Levy-Marchal C, Jouret B, Weill J, Meyre D, Walley A \& Froguel P. (2007). Single nucleotide polymorphisms in the neuropeptide Y2 receptor (NPY2R) gene and association with severe obesity in French white subjects. Diabetologia 50: 574-584.
Sidik SM \& Rampal L (2009). The prevalence and factors associated with obesity among adult women in Selangor, Malaysia. Asia Pac Fam Med 8(1): 2.
Torekov SS, Larsen LH, Glümer C, BorchJohnsen K, Jørgensen T, Holst JJ, Madsen OD, Hansen T \& Pedersen O (2005). Evidence of an association between the Arg72 allele of the peptide YY and increased risk of type 2 diabetes. Diabetes 54: 2261-2265.
Vazquez G, Duval S, Jacobs DR \& Silventoinen K (2007). Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29: 115-128.

Velásquez-Malendez G, Martins IS, Cervato AM, Fornes NS, Marucci MFN \& Coelho LT (1999). Relationship between stature, overweight and central obesity in the adult population in São Paulo, Brazil. Int J Obes 23: 639-644.
World Health Organization (WHO)(2011). Obesity and Overweight: Factsheet 311. Online http://www.who.int/mediacentre/ factsheets/fs311/en/index.html [Assessed 27 March2011].
Zhu SK, Wang ZM, Heskha S, Heo M, Faith MS \& Heymsfield SB (2002). Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr 76: 743-749.

[^0]: * Correspondence author: Say Yee How; Email: sayyh@utar.edu.my

[^1]: SBP: systolic blood pressure; DBP: diastolic blood pressure; WC: waist circumference; WHR: waist-to-hip ratio; BMI: body mass index; TBF: total body fat; SF: subcutaneous fat; VFL: visceral fat level; RM: resting metabolism; SM: skeletal muscle.
 \# - obesity status and gender values by Student's t-test; ethnicity values by one-way ANOVA

[^2]: SBP: systolic blood pressure; DBP: diastolic blood pressure; WC: waist circumference; WHR: waist-to-hip ratio; BMI: body mass index;
 TBF: total body fat; SF: subcutaneous fat; VFL: visceral fat level; RM: resting metabolism; SM: skeletal muscle.
 § - Values are by Chi-Square test, significant at $p<0.05$.
 $\psi-$ Values are mean \pm SD Values, p values are by Student's t-test, significant at $p<0.05$
 () - \% within the obesity status, ethnicity or gender of respondents

