Relationship of Body Mass Index, Waist Circumference and Waist-Stature Ratio with Body Fat of the Indian G orkha Population

V arte LR, Rawat S \& Singh I
D efence Institute of Physiology and Allied Sciences (DIPAS), D efence Research and D evelopment Organization (D RD O), Lucknow R oad, Timarpur, D elhi - 110054

Abstract

Introduction: Body mass index (BMI) has traditionally been the chosen indicator by which to measure body size, composition, and to diagnose underweight and overweight. However, alternative measures that reflect abdominal adiposity, such as waist circumference, waist-hip ratio and waist-height ratio, have been suggested as being superior to BMI in predicting cardio-vascular diseases (CVD) risk. This study was aimed at determining the predictive power of anthropometric indicators like body mass index, waist circumference and waist stature ratio with body fat in an Indian military personnel population group, and to establish cut-off points as discriminators of high body fat. M ethods: The study was crosssectional in nature with a sample size of 388 active Gorkha mal e personnel aged $20-49$ years (mean age 33.1 ± 5.33). A nthropometric indicators included body mass index, waist circumference, waist-hip ratio and waist-stature ratio. The analysis of receiver operating characteristic curves (ROC) with a confidence interval of 95% was adopted to identify predictors of obesity. Subsequently, the cut-off points with their relevant sensitivities and specificities were identified. Result: A reas under the ROC curves with 95% confidence intervals were body mass index $=0.86$ ($0.84-0.88$); waist circumference $=0.82$ ($0.80-0.84$); waist- hip ratio $=$ 0.74 (0.71-0.77); waist-stature ratio $=0.81$ (0.78 -0.84). Different cut-off points of anthropometric indicators with better predictive power and their relevant sensitivities and specificities were identified. The following cut-offs with their corresponding sensitivity and specificity values are suggested for determining obesity for the study population: body mass index $=23.4$ (98.00, 62.00), waist circumference $=77.8(98.00,60.50)$ and waist stature ratio $=0.47(98.60,68.00)$ respectively. Conclusion: The results showed that among active military personnel, BMI, WC and WSR may serve well in classifying individuals into broad categories corresponding to percentage fat categories. Further studies on different populations should be undertaken for the verification of the cut-off levels identified.

Key w ords: Body mass index, cut-off waist circumference, waist-hip ratio, waiststature ratio

INTRODUCTION

Obesity is a worldwide problem both in developed and developing nations with
elevated risk of cardiovascular diseases (CVD) and other chronic conditions (M okdad et al., 2003; Ogden et al., 2007). Body mass index (BMI) is the usual indicator to
assess overweight and obesity in population studies, but its validity has been questioned because theindex does not measurefat only (Friedl, 2004; Heinrich et al. 2008). Such lack of specificity in measuring fat may be a drawback because muscle mass may be a greater component of BMI in the general population. This drawback may be greater in younger than in older persons as muscle mass decreases with age (Gallagher et al., 1996).

In addition, physical performance is highly associated with BMI and also highly associated with maximal performance (Harman \& Frykman ,1992). Waist circumference is assessed as part of a genderspecific function to estimatebody fat in those who haveexceeded their weight allowance (Friedl, 2004; Hodgdon \& Friedl, 1999; Williamson et al., 2009; Sundin et al., 2011). In onestudy of obesity among Indian naval hospital staff in the age range of 18 to 47 years, it was reported that the preval ence of overweight/ obesity was about 20.66% by BMI and 47.11% by body fat content (Singh, Sikri \& Garg, 2008).

BMI has traditionally been the chosen indicator by which to measure body size, composition, and to diagnose underweight and overweight. However, alternative measures that reflect abdominal adiposity such as waist circumference, waist-hip ratio and waist- height ratio, have been suggested as being superior to BMI in predicting CVD risk.

The aim of this study was to assess which anthropometric parameters best assessed levels of body fat among the population under study. From a policy point of view, wew wanted to evaluatewhether BMI on its own would be sufficient to assess obesity in the population or whether a combination with waist circumference or waist stature ratio was better in predicting obesity among the population.

METHODS

A ctive serving Gorkha males ($\mathrm{n}=388$) aged $20-49$ years with a mean age of 33.13 years \pm
$5.33 y$ and mean BMI of $24.5 \mathrm{~kg} / \mathrm{m}^{2}$ volunteered for the study during 2011. Gorkhas of Tibeto-M ongolian origin mostly belong to the M agar, Rai, Limbu, Gurung, Tamang and Kiranti origin. TheGorkhas are indigenous peoplemainly from mid-western and eastern Nepal who have gained recognition as tough soldiers in Gorkha regiments of the Indian and British armies (Ember \& Ember, 2003). Thesesubjects were part of a larger cohort of a project entitled "Study of A nthropometric, Physiologic and Genomic Diversity among Five Groups of High Altitude Population."

Anthropometric assessment

Height of the subjects was measured to the nearest mm, using SECA 767 electronic personal scale (Medical Scales and Measuring Systems, Germany). Body weight, measured in light clothing and barefoot to the nearest 0.1 kg and height, without shoes, were measured to the nearest 0.1 cm using the SECA 767 electronic personal scale (Medical Scales and Measuring Systems, Germany). BMI was calculated by dividing the subject's weight in kilograms by height in metres squared (kg/ m²). In thisstudy, wehaveused theBMI classification according to the WHO Classification for Ethnic Asian populations whereunderweight is $<18.50 \mathrm{~kg} / \mathrm{m}^{2}$, normal is $18.50-22.99 \mathrm{~kg} / \mathrm{m}^{2}$, overweight is $23.00-$ $24.99 \mathrm{~kg} / \mathrm{m}^{2}$, pre obese is $25.00-29.99 \mathrm{~kg} / \mathrm{m}^{2}$ and obese is $>30 \mathrm{~kg} / \mathrm{m}^{2}(\mathrm{WHO}, 2004)$.

Waist circumference (WC) was measured midway between the iliac crest and the lower-most margin of the ribs. Hip circumference was measured at the maximum circumference of the buttocks, with thesubjectstanding and his feet placed together. Themean of threereadings of each circumference was taken for the cal culation of the waist: hip ratio. Waist-Hip Ratio (WHR) was calculated by dividing the waist by the hip circumference.

Waist-Stature Ratio (WSR) was measured by dividing waist circumference by standing height in cms.

Biceps, triceps, subscapular and suprailiac skinfold thickness was measured using Eiken skin fold caliper (Eiyoken-Type Meikosha Co Ltd, Japan). Biceps skinfold thickness was measured at the level of the nippleline whiletriceps skinfold thickness was measured midway between the acromion process of the scapula and the olecranon process. The subscapular and suprailiac skinfold thickness was measured at the inferior angle of the scapula and superiorly on the iliac crest directly in the mid-axillary line respectively. All skinfold thickness was measured to thenearest 1 mm . Themean of threereadings was recorded at each site. The sum of all skinfold thickness was used for the calculation of percentage BF using the standard equation (Durnin \& Womersley, 1974).

Abdominal obesity is defined as waist circumference ≥ 90 centimeters in men (Ember \& Ember, 2003). High waist hip ratio is defined as ≥ 0.9 in men and ≥ 0.85 in women. High WSR is defined as ≥ 0.50 for both males and females. Thesum of skinfold thickness is defined as high when thevalue exceeds 50 mm (Dudejaet al., 2001).

Ethical clearance

The project was approved by the Ethical Committee of the Institute. Informed consent was obtained at initial data collection.

Statistical analysis

The relationship between various anthropometric parameters and body fat was evaluated using Pearson's correl ation coefficients and logistic regression was performed for obesity based on 25\% body fat with body mass index, waist circumference, waist hip ratio and waist stature ratio. ANOVA was used for comparison of various anthropometric variables of three age groups. Differences between the age groups were analysed by F-ratio and presented as mean \pm SD. Values were considered statistically significant when $p<$ 0.05 . To identify predictors of obesity, we
adopted the analysis of receiver operating characteristic curves (ROC) with a confidenceinterval of 95%. Subsequently, we identified the cut-off points with their relevant sensitivities and specificities. All statistical tests were carried out using SPSS Version 17 for Windows.

RESULTS

All theanthropometric variables between the three age groups showed a statistically significant differenceamong them, except for height (Table 1). Table 2 shows the correl ation matrix between body fat percent with BMI, waist circumference, waist hip ratio and waist-stature ratio. In the present study, about 13.1% of the present population groups under study wereobese, having fat percent value of 25% or more (table not shown). In Table 2, using Pearson's correlation coefficients between body fat percent with BMI, waist circumference, waist-hip ratio and waist-stature ratio for the three age groups, body fat percent showed a strong correlation with all anthropometric parameters ($p<0.001$).

Logistic regression analysis in Table 3 shows that thosewith a high body fat percent and a WC of $>85 \mathrm{~cm}$ were 6.02 times more likely to beobeseas compared to thosewho had a WC of $<85 \mathrm{~cm}$. However, when age was adjusted, this chanceslightly decreased, al though it was still statistically significant ($\mathrm{OR}=4.410,95 \% \mathrm{Cl} 1.84-10.56$).

Similarly, thosewho had aWHR of >0.90 were 6.29 times more likely to be suffering from obesity than those whose WHR was <0.90 (OR $6.29,95 \% \mathrm{Cl} 3.05-12.98$) and this chanceal so decreased slightly when agewas adjusted (OR 6.07, 95\% CI 2.90-12.69). However, for those who had a WSR >0.50, thechanceof being obese compared to those whose WSR <0.50 increased significantly after adjusting for age, it was highly significant (OR 17.03, 95\% CI 6.33-45.10).

For those belonging to the higher BMI group ($>25 \mathrm{~kg} / \mathrm{m}^{2}$), they had a statistically very high chance of being obese than the

Table 1. Anthropometric variables of three age groups (mean and SD).

V ariable	$\begin{gathered} 20-29 y \\ (\mathrm{n}=111) \end{gathered}$		$\begin{gathered} 30-39 y \\ (n-227) \end{gathered}$		$\begin{aligned} & 40-49 y \\ & (n=50) \end{aligned}$		F ratio	p
	M ean	SD	M ean	SD	M ean	SD		
Age	26.96	2.06	34.13	2.70	42.32	2.05	718.79	$0.000^{* *}$
Height	164.83	4.54	164.09	5.21	163.55	4.84	1.36	0.26
Weight	63.33	6.41	66.98	6.90	68.70	6.79	15.02	0.000**
Biceps	4.62	2.57	5.26	2.02	5.31	1.65	3.58	0.029*
Triceps	9.27	4.09	11.52	4.20	11.62	3.16	12.37	0.000**
Subscapular	13.94	6.62	16.64	6.43	18.52	7.01	10.17	0.000**
Supra iliac	11.07	5.87	13.49	6.71	12.65	4.65	5.59	0.004*
Fat percent	16.76	5.39	19.68	4.95	20.30	4.25	14.87	0.000**
Sum skinfold	38.91	16.76	46.91	15.91	48.10	12.87	10.82	$0.000^{* *}$
BMI	23.30	2.12	24.88	2.22	25.66	1.99	27.77	0.000**
Waist circumference	76.61	5.12	81.73	6.06	83.90	5.34	39.87	0.000**
Hip circumference	88.41	3.81	90.35	4.13	91.07	5.11	10.28	$0.000^{* *}$
Waist hip ratio	0.87	0.04	0.90	0.05	0.92	0.53	30.42	0.000**
Waist stature ratio	0.46	0.03	0.50	0.04	0.51	0.03	42.80	$0.000^{* *}$

*p<0.05, **p<0.001

Table 2. Correlation matrix between body fat percent with BMI, waist circumference, waist hip ratio and waist-stature ratio.

		W aist Circumference	BM I	W aist Hip Ratio	W aist-Stature Ratio
Body fat percent	Pearson	0.759(**)	0.864 ${ }^{* *}{ }^{*}$	0.496(**)	0.774 (**)
	Correlation				
	Sig. (2-tailed)	0.000	0.000	0.000	0.000
	N	388	388	388	388

** Correlation is significant at the 0.01 level (2-tailed).

Table 3. Logistic regression of the population for obesity based on 25% body fat with BMI, waist circumference, waist-hip ratio and waist-statue ratio.

	U nadjusted		A djusted					
	Sig.	Exp(B)	95 \% C.I.		Sig.	$\operatorname{Exp}(\mathrm{B})$	95 \% C.I.	
			Lower	U pper			Lower	U pper
BMI								
$<25 \mathrm{~kg} / \mathrm{m}^{2}$	-	-	-	-	-	-	-	-
$>25 \mathrm{~kg} / \mathrm{m}^{2}$	0.001	21.25*	7.43	60.41	0.000	22.59*	7.76	65.78
Waist Circumference (WC)								
$<85 \mathrm{~cm}$	-	-	-	-	-	-	-	-
$>85 \mathrm{~cm}$	0.001	6.02*	3.23	11.21	0.001	4.410*	1.84	10.56
Waist Hip Ratio (WHR)								
<0.90	-	-	-	-	-	-	-	-
>0.90	0.001	6.29*	3.05	12.98	0.000	6.07*	2.90	12.69
Waist Stature Ratio (WSR)								
<0.50	-	-	-	-	-	-	-	-
>0.50	0.001	15.02*	5.82	38.79	0.000	17.03*	6.33	45.10

lower BMI group both in theunadjusted and adjusted groups, respectively (unadjusted OR 21.25, 95\% CI 7.43-60.41; adjusted OR 22.59, 95\% CI 7.76-65.78).

Table 4 shows the area under the ROC curve between anthropometric indicators likeBMI, waistcircumference, waisthip ratio and waist stature ratio of obesity and body fat percent. For the 20-29 age group, BMI, WC and WSR showed AUC of more than 0.85. Consistently, among the three age groups, WHR did not show a good AUC. Thecut-off points, sensitivity, specificity of anthropometric indicators among three
different age groups are also shown in the sametable. Except for BMI, the other three anthropometric indicators' cut-off values werefound to increase with increasing age in the groups.

Figure1show theROC curvecomparing various anthropometric indicatorslikeBMI, waist circumference, waist hip ratio and waiststatureratio to determineobesity based on body fat percent. All four anthropometric parameters indicated agood AUC. BMI,WC and WSR showed AUC of more than 0.85 ($0.93,0.89$ and 0.88) respectively (Figure 1).

Table 4. Area under the ROC curve and cut-off points with sensitivity and specificity of anthropometric indicators as prediction of body fat percent among different age groups.

Body Fat percent		Area under the ROC curve (95\%CI)							
		20-29y	p	30-39y		P	40-49y		P
BMI (kg/ m${ }^{2}$) 0		0.97 (0.94-0.99)	<0.001*	0.81 (0.78-0.85)		<0.001*	0.89 (0.76-0.99)		<0.002*
WC (cm)	0.95 (0.93-0.97)		$<0.001 *$	0.77 (0.74-0.80)		<0.001*	0.76	(0.59-0.93)	40.041*
WHR	0.72 (0.61-0.83)		>0.056	0.72 (0.68-0.76)		<0.001*	0.69	(44-0.94)	<0.136*
WSR	0.88 (0.61-0.94)		<0.001*	0.77	.74-0.81)	<0.001*	0.80 (0.	.62-0.97)	<0.018*
Body Fat percent	20-29y			30-39y			40-49y		
	Cut off point	Sensitivity (\%)	Speeificity (\%)	Cut off point	$\begin{aligned} & \text { Sensitivity } \\ & \text { (\%) } \end{aligned}$	Speificity (\%)	Cut off point	$\begin{aligned} & \text { Sensitivity } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & \text { Sperfidity } \\ & \text { (\%) } \\ & \hline \end{aligned}$
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)	22.3	100.00	60.20	23.8	94.70	60.80	22.5	100.00	93.20
WC (cm)	74.4	100.00	62.10	78.9	97.40	60.30	80.8	100.00	68.20
WHR	0.85	85.70	66.00	0.87	94.70	64.60	0.89	66.70	54.50
WSR	0.45	100.00	70.90	0.47	94.70	67.70	0.49	100.00	63.90

[^0]

Figure 1 ROC curve comparing various anthropometric indicators used in the study as determinates of obesity. WSR=Waist-Stature Ratio, WHR=Waist-Hip Ratio, BMI=Body Mass Index and WC=Waist Circumference.

Table 5. A rea under the ROC curve and $95 \% \mathrm{Cl}$ between anthropometric indicators of obesity and body fat percent for 20-49 years group

Body Fat percent	Area under the ROC curve $(95 \% \mathrm{Cl})$	p	Cut off point	Sensitivity (\%)	Specificity (\%)
BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	$0.86(0.84-0.88)$	$<0.001^{*}$	23.4	98.00	62.00
WC (cm)	$0.82(0.80-0.84)$	$<0.001^{*}$	77.8	98.00	60.50
WHR	$0.74(0.71-0.77)$	$<0.001^{*}$	0.86	94.10	65.60
WSR	$0.81(0.78-0.84)$	$<0.001^{*}$	0.47	98.60	68.00

* p-values for rejecting the null of $\mathrm{AUC}=0.05$

The area under the ROC curve (AUC) and $95 \% \mathrm{Cl}$, cut-off points, sensitivity, specificity between anthropometric indicators of obesity and body fat percent for 20-49 years are shown in Table 5. It is suggested that the following cut-offs with corresponding sensitivity and specificity be used in determining obesity based on a person's body fat in thepresent population. $\mathrm{BMI}=23.4$ (98.00, 62.00), WC= 77.8 (98.00, $60.50)$ and $\mathrm{WSR}=0.47(98.60,68.00)$ respectively.

DISCUSSION

Only thefirst age group (20-29y) mean WC was within the 78 cm waist circumference as proposed by Misra et al. (2006) for Asian Indians (Chang et al., 2003). The waist circumference of the 30-39 age group and $40-49$ age groups was 81.73 and 83.90 cm respectively. WHO recommends the use of prespecified cut-off pointsfor BMI,WC and WHR to standardise comparisons within and between populations. Currently such cut-off points are derived from studies among European populations and thus may not be applicable to other ethnic groups. Indeed, some studies suggest that Asian populations manifest CVD risk factors at lower levels of BMI and WC than westerners, owing, in part, to a higher percentageof body fat (Deurenberg-Yap et al., 1999; He et al., 2001; Chang et al., 2003). In fact, the WHO Expert Committee on obesity in Asian and

Pacific populations suggested revised cutoff points for waist circumference: 90 cm for men and 80 cm for women to identify persons with abdominal obesity (M isra et al., 2006).

Contrary to common belief, it is not known if BMI is a poorer health measurethan waist circumference. Although waist circumferencehas been preferred over BMI as an assessment of obesity, both perform equally well in their association with known CVD risk factors such as blood pressureand insulin-mediated glucoseupdate(Huxley et al., 2010; Farin, A bbasi \& Reaven, 2005). In the present study too, it seems that BMI and waist circumference equally result in high sensitivity and specificity to fat percent.

Limitations

It is al ways ideal to carry out longitudinal studies for a better understanding of the relationship between anthropometric variables with body fat. Butsincethesubjects of thepresent study aretransferred from one placeto another every couple years or so, a longitudinal study was not feasible and the present study was cross-sectional in this regard.

The cut off values suggested for BMI, waist circumference, waist hip ratio and waist statureratio may not beapplicablefor a civilian population of the same ethnic group, as the subjects in this study were activeserving personnel. Thestudy did not collect information on female subjects.

CONCLUSION

Wetried to analysetherelation of BMI, WC, WHR and WSR with body fat in the present study and results show that body fat percent varies across the age groups. The results show that among activemilitary personnel, BMI, WC and WSR may serve well in classifying individuals into broad categories corresponding to percentagefat categories.

ACKNOWLEDGEMENTS

The authors would like to thank the volunteers for their participation in the project. Grant for the project was received fromDRDO.

Conflict of interest

The authors declare that there are no competing interests of any kind in this study.

REFERENCES

Chang CJ, Wu CH, Chang CS, Yao WJ, Yang YC\& Wu JS et al (2003). Low body mass index but high percent body fat in Taiwanese subjects: implications of obesity cutoffs. Intrl J O bes RItd M et Dis 27: 253-9.
Deurenberg-Yap M, Yian TB, Kai CS, Deurenberg P \& van Staveren WA (1999). Manifestation of cardiovascular risk factors at low levels of body mass index and waist-to-hip ratio in Singaporean Chinese. A sia Pacfic J Clin Nutr 8: 177-83.

Dudeja V, Misra A, Pandey RM, Devina G, Kumar G \& Vikram NK (2001). BMI does not accurately predict overweight in Asian Indians in northern India. Brit J Nutr 86: 105-112.

Durnin JVGA \& Womersley J (1974). Body fat assessed from total body density and its estimation from skin fold thickness: measurements on 481 men and women aged from 16 to 72 years. Brit J N utr 32:7797.

Ember C \& Ember M (2003). Encyclopedia of Sex and Gender: Men and Women in the World's Cultures. Springer, New York.

Farin H M , A bbasi F \& Reaven GM (2005). Body mass index and waist circumference correlate to the same degree with insulinmediated glucose uptake. M etabolism 54:1323-1328.
Friedl KE (2004). Can you be large and not obese? The distinction between, body weight, body fat, and abdominal fat in occupational standards. Diabetes Technol Ther 6: 732-749.

Gallagher D, Visser M, Sepulveda D, Pierson RN , Harris T \& Heymsfield SB (1996). How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143: 228-239.
Harman EA \& Frykman PN (1992). The relationship of body size and composition to the performance of physically demanding tasks. In: Body Composition and Physical Performance: Applications for the Military Services. Marriott BM, Grumstrup-Scott J (eds.). National A cademy Press, Washington, DC.
HeM, Tan KC, Li ET, Kung AW (2001). Body fat determination by dual energy X-ray absorptiometry and its relation to body mass index and waist circumference in Hong Kong Chinese. Intrl J O bes RItd M et D is $25: 748-52$.

Heinrich KM , Jitnarim N, Suminski RR, Berkel L, Hunter CM, Alvarez L et al. (2008). Obesity classification in military personnel: A comparison of body fat, waist circumference, and body mass index measurements. M ilitary M ed 173: 67-73.
Hodgdon JA \& Friedl K (1999). Development of the DoD body composition estimation equations. Technical Document No 99-2B. San Diego: Naval Health Research Center. 1999.

Huxley R, Mendis S, Zheleznyakov E, Reddy S \& Chan J (2010). Body mass index, waist circumference and waist: hip ratio as predictors of cardiovascular risk-a review of the literature. Eur J Clin Nutr 64: 16-22.

Misra A, Vikram NK, Gupta R, Pandey RM, Wasir JS \& Gupta VP (2006). Waist circumference cut-off points and action levels for Asian Indians for identification
of abdominal obesity. Intrl J O bes 30:106111.

M okdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS \& Marks JS (2003). Prevalence of obesity, diabetes, and obesity-related health risk factors. JAM A 289 (1): 76-79.

Ogden CL, Yanovski SZ, Carroll MD \& Flegal KM (2007). The epidemiology of obesity. Gastroenterology 132: 2087-2102.

Singh SP, Sikri G \& Garg MK (2008). Body mass index and obesity: Tailoring "cut-off" for an Asian Indian male population. M ed J Armed Forces Ind 64(4): 350-353.

Sundin J, Fear NT, Wessely S \& Rona RJ (2011). Obesity in the UK Armed Forces: risk factors. M il M ed 176(5): 507-12.
WHO (2004). A ppropriate body mass index for A sian populations and its implications for policy and intervention strategies. Lancet 363: 157-163.

Williamson DA, Bathalon GP, Sigrist LD, Allen HR, Fried KE, Young AJ et al (2009). Military services fitness database: Devel opment of a computerised physical fitness and weight management database for the US Army. M il M ed 174: 1-8.

[^0]: * p-values for rejecting the null of $\mathrm{AUC}=0.05$

